题目集总目录
学习指路博客 二叉搜索树与平衡二叉树

# 04 - 树 4 是否同一棵二叉搜索树 (25 分)

本题链接

小白专场将详细介绍 C 语言实现方法,属于基本训练,一定要做

# 题目大意

对于输入的各种插入序列,判断它们是否能生成一样的二叉搜索树。

# 思路

1. 分别建两棵树的判别方法
2. 不建树直接判断序列
3. 建一棵树再判别其他序列是否与该树一致
这里采用的是思路 3

# 代码

#include <iostream>
using namespace std;
#define maxsize 11
typedef struct TNode* Tree;
struct TNode {
    int data;
    Tree left,right;
    int flag;   // 判断是否访问过
};
void Clear(Tree R) {    // 清除标记
    if(!R) return;
    R->flag = 0;
    Clear(R->left);
    Clear(R->right);
}
void FreeTree(Tree R) { // 清空该树
    if(!R) return;
    FreeTree(R->left);
    FreeTree(R->right);
    delete R;
}
Tree NewNode(int data) {//
    Tree R = new TNode;
    R->data = data;
    R->left = R->right = NULL;
    R->flag = 0;
    return R;
}
Tree BST_Insert(int data, Tree R) {
    if (!R) R = NewNode(data);
    else {
        if(data > R->data)  // 大于该结点,插入到右子树
            R->right = BST_Insert(data, R->right);
        else                // 小于或等于该结点,插入到左子树
            R->left = BST_Insert(data, R->left);
    }
    return R;
}
Tree Build(int N) {
    Tree R = NULL;
    int x;
    cin >> x;
    R = NewNode(x);
    for(int i = 1; i < N; ++i) {
        cin >> x;
        R = BST_Insert(x, R);
    }
    return R;
}
bool check(int data, Tree R) {
    if(R->flag) {// 已经访问过了
        if(data < R->data) 
            return check(data, R->left);
        else if(data > R->data) 
            return check(data, R->right);
        else return false;
    } else {
        if(data == R->data) {
            R->flag = 1;
            return true;
        } else return false;
    }
}
bool judge(Tree R1, int N) {
    int x;
    bool flag = true;
    if(N && R1) {
        cin >> x;
        if(x != R1->data) flag = false;
        R1->flag = 1;
        for(int i = 1; i < N; ++i) {
            cin >> x;
            if(flag && (!check(x,R1))) flag = false;
        }
    }
    return flag;
}
int main() {    
    int N, L;
    cin >> N;
    while(N) {
        cin >> L;
        Tree R1;
        R1 = Build(N);
        for(int i = 0; i < L; ++i) {
            if(judge(R1, N)) 
                cout << "Yes" << endl;
            else cout << "No" << endl;
            Clear(R1);  // 清除标记
        }   
        FreeTree(R1);
        cin >> N;
    }
    return 0;
}

# 测试点

测试点如下
在这里插入图片描述

# 04 - 树 5 Root of AVL Tree (25 分)

本题链接

2013 年浙江大学计算机学院免试研究生上机考试真题,是关于 AVL 树的基本训练,一定要做

# 题目大意

现在给定一插入序列,输出生成的 AVL 树的根。

# 代码

#include <iostream>
#include <algorithm>
using namespace std;
#define maxsize 11
typedef struct AVLNode* AVLTree;
struct AVLNode {
    int data;
    AVLTree left,right;
    int Height;   
};
void FreeTree(AVLTree R) { // 清空该树
    if(!R) return;
    FreeTree(R->left);
    FreeTree(R->right);
    delete R;
}
int GetHeight(AVLTree R) {
    if(R) 
        return R->Height;
    else 
        return 0;
}
AVLTree SingleLeftRotate(AVLTree R) {   //LL 单旋
    AVLTree RL = R->left;
    R->left = RL->right;
    RL->right = R;
    R->Height = max( GetHeight(R->left), GetHeight(R->right) ) + 1;
    RL->Height = max( GetHeight(RL->left), R->Height) + 1;
    return RL;
}
AVLTree SingleRightRotate(AVLTree R) {  //RR 单旋
    AVLTree RR = R->right;
    R->right = RR->left;
    RR->left = R;
    R->Height = max( GetHeight(R->left), GetHeight(R->right) ) + 1;
    RR->Height = max( R->Height, GetHeight(RR->right) ) + 1;
    return RR;
}
AVLTree DoubleLeftRightRotate(AVLTree R) {    //LR 旋转
 R->left = SingleRightRotate(R->left);
 return SingleLeftRotate(R);
}
AVLTree DoubleRightLeftRotate(AVLTree R) {    //RL 旋转
 R->right = SingleLeftRotate(R->right);
 return SingleRightRotate(R);
}
AVLTree NewNode(int data) {//
    AVLTree R = new AVLNode;
    R->data = data;
    R->left = R->right = NULL;
    R->Height = 0;
    return R;
}
AVLTree AVL_Insert(int data, AVLTree R) {
    if (!R) R = NewNode(data);
    else if(data < R->data) {   // 插入到左子树
        R->left = AVL_Insert(data, R->left);
        if(GetHeight(R->left) - GetHeight(R->right) == 2) { // 需要左旋
           if (data < R->left->data)
    R = SingleLeftRotate(R); // 需要左单旋
   else 
    R = DoubleLeftRightRotate(R);// 左 - 右双旋
        }
    } else if(data > R->data) { // 插入到右子树
        R->right = AVL_Insert(data, R->right);
        if(GetHeight(R->left) - GetHeight(R->right) == -2) { // 需要右旋
           if (data > R->right->data)
    R = SingleRightRotate(R); // 需要右单旋
   else 
    R = DoubleRightLeftRotate(R);// 右 - 左双旋
        }
    }
    R->Height = max(GetHeight(R->left), GetHeight(R->right)) + 1;
    return R;
}
AVLTree Build(int N) {
    AVLTree R = NULL;
    int x;
    cin >> x;
    R = NewNode(x);
    for(int i = 1; i < N; ++i) {
        cin >> x;
        R = AVL_Insert(x, R);
    }
    return R;
}
int main() {    
    int N, L;
    AVLTree R;
    cin >> N;
    R = Build(N);
    cout << R->data << endl;
    return 0;
}

# 测试点

测试点如下
在这里插入图片描述

# 04 - 树 6 Complete Binary Search Tree (30 分)

本题链接

2013 年秋季 PAT 甲级真题,略有难度,量力而行。第 7 周将给出讲解。

# 题目大意

现在给定一完全二叉搜索树的插入序列,输出生成的完全二叉树的层次遍历序列

# 思路

因为是完全二叉搜索树,由左子树结点值 > 根结点结点值 > 右子树结点值这个性质,可将给定输入序列从小到大排好序后即为该树的中序遍历序列,然后根据中序遍历的结果递归构造层次遍历序列
中序遍历序列中,总结点数为 n 时,若左子树的节点数为 x 的,则根节点即为第 x+1 个元素。而如何知道左子树的结点树呢,这也是由完全二叉树的性质决定的,因为 n 个节点的完全二叉树,它的左子树结点数是确定的,则可以设置一个根据总结点数求左子树结点树的函数。可用到二叉树以下几个性质:

  1. n 个结点的二叉树,其深度为 log2(n) + 1
  2. 二叉树的第 i 层,最多有 2i-1 个结点
  3. 深度为 k 的二叉树,最多有 2k-1 个结点

# 代码

#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
#define maxsize 2002
#define Null -1
int a[maxsize],b[maxsize];// 中序遍历的结果 层次遍历的结果
int GetLeftSum(int n) { // 获取左子树总结点数  n 为结点总数
    if(n == 1) return 0;
    int h = log2(n);// 除最后一层的深度
    int Lsum = pow(2, h-1) - 1; // 除最后一层之外的左子树结点个数
    // 即为 (2^h-1-1)/2
    int last = n - (pow(2, h) - 1); // 最后一层结点数
    if(last <= pow(2, h-1)) 
        Lsum += last;
    else Lsum += pow(2, h-1);
    return Lsum;
}
void LevelOrderRebuild(int left, int right,int bR) {
    int n = right - left + 1;// 总结点数
    if(n == 0) return;
    int leftlen = GetLeftSum(n);
    int aR = left + leftlen;
    b[bR] = a[aR]; 
    int nl = bR * 2 + 1;
    int nr = nl + 1;
    LevelOrderRebuild(left, aR-1, nl);
    LevelOrderRebuild(aR+1, right, nr); 
}
int main() {   
    int N;
    cin >> N;
    for(int i = 0; i < N; ++i) 
        cin >> a[i];
    sort(a, a+N);
    LevelOrderRebuild(0, N-1, 0);
    for(int i = 0; i < N; ++i) {
        if(i) {
            cout << " " << b[i];
        } else cout << b[i];
    }
    return 0;
}

# 测试点

测试点如下:
在这里插入图片描述

# 04 - 树 7 二叉搜索树的操作集 (30 分)

本题链接

# 题目大意

二叉搜索树的操作集实现
在这里插入图片描述

# 代码

#include <stdio.h>
#include <stdlib.h>
typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};
void PreorderTraversal( BinTree BT ) { /* 先序遍历,由裁判实现,细节不表 */
    if(BT) {
  printf("%d", BT->Data);
  PreorderTraversal( BT->Left);
  PreorderTraversal( BT->Right);
 }
}
void InorderTraversal( BinTree BT ) {  /* 中序遍历,由裁判实现,细节不表 */
    if(BT) {
  InorderTraversal( BT->Left);
  printf("%d", BT->Data);
  InorderTraversal( BT->Right);
 }
}
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
int main()
{
    BinTree BST, MinP, MaxP, Tmp;
    ElementType X;
    int N, i;
    BST = NULL;
    scanf("%d", &N);
    for ( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Insert(BST, X);
    }
    printf("Preorder:"); PreorderTraversal(BST); printf("\n");
    MinP = FindMin(BST);
    MaxP = FindMax(BST);
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        Tmp = Find(BST, X);
        if (Tmp == NULL) printf("%d is not found\n", X);
        else {
            printf("%d is found\n", Tmp->Data);
            if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
            if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
        }
    }
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Delete(BST, X);
    }
    printf("Inorder:"); InorderTraversal(BST); printf("\n");
    return 0;
}
/* 你的代码将被嵌在这里 */
BinTree Insert( BinTree BST, ElementType X ) {
    if(!BST) {
        BST = (BinTree) malloc(sizeof(struct TNode));
        BST->Data = X;
        BST->Left = BST->Right = NULL;
        return BST;
    } else {
        if(X < BST->Data)
            BST->Left = Insert(BST->Left, X);
        else if(X > BST->Data)
            BST->Right = Insert(BST->Right, X);
    }
    return BST;
}
BinTree Delete( BinTree BST, ElementType X ) {
    Position tmp;
 if(!BST) printf("Not Found\n");
 else if (X < BST->Data) 
  BST->Left = Delete(BST->Left, X);
 else if (X > BST->Data) 
  BST->Right = Delete(BST->Right, X);
 else { // 找到了要删除的结点
  if (BST->Left && BST->Right) { // 待删除结点有左右两个孩子
   tmp = FindMin(BST->Right); // 在右子树中找最小的元素填充删除节点
   BST->Data = tmp->Data;
   BST->Right = Delete(BST->Right, tmp->Data);
            // 填充完后,在右子树中删除该最小元素
  }
  else { // 待删除结点有 1 个或无子结点
   tmp = BST;
   if (!BST->Left) // 有有孩子或无子节点
    BST = BST->Right;
   else if (!BST->Right)
    BST = BST->Left;
   free(tmp);
  }
 }
 return BST;
}
Position Find( BinTree BST, ElementType X ) {
    while (BST) {
        if(X < BST->Data)
            BST = BST->Left;
        else if(X > BST->Data)
            BST = BST->Right;
        else return BST;
    }
    return NULL;
}
Position FindMin( BinTree BST ) {
    if(BST) {
        while(BST->Left) 
            BST = BST->Left;
    }
    return BST;
}
Position FindMax( BinTree BST ) {
    if(BST) {
        while(BST->Right) 
            BST = BST->Right;
    }
    return BST;
}

# 测试点

测试点如下
在这里插入图片描述